Mid-Atlantic Offshore Wind
Metocean Design Environment

Briefing

Society of American Military Engineers

Hampton, VA

07 May 2015

George Hagerman
VCERC Director of Research
Virginia Tech Advanced Research Institute
1100 Exploration Way, Suite 315
Hampton, VA 23666

Email: hagerman@vt.edu
Phone: 757-325-6994
Nautical Chart Showing Commercial Wind Energy Area (WEA) and two Research Leases

Research Lease 1 for monitoring commercial project development area

Research Lease 2 for demonstration turbines and for validating remote metocean & environmental monitoring instrumentation
Virginia WEA Leased One Month after RI-MA AMI

Deepwater commercial lease effective date: 01 Oct 2013

Dominion commercial lease effective date: 01 Nov 2013
Dominion’s Virginia Offshore Wind Demonstration and Commercial Project Footprints

Commercial project area may contain anywhere from 230 to 330 6-MW turbines depending on spacing for maximum cost-effectiveness and minimum environmental impact (1,400 to 2,000 MW)

Two 6-MW demonstration turbines
Metocean Measurement and Modeling
Historical Hurricane Tracks within 100 km of Virginia Offshore Wind Energy Area
Offshore Extrapolation of ASCE 7-10 Building Standard 50-Year Return Period Gust Speed

IEC Class I turbine design also may not be adequate for 50-yr hurricane wind speeds in RI or MA Wind Energy Areas, and may be marginally adequate for Virginia Wind Energy Area.
Comparison of Relevant Reference Wind Speeds

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IEC Class I Turbine Design</th>
<th>IEC Class II Turbine Design</th>
<th>Category 2 Hurricane Range</th>
<th>ASCE 7-10 Building Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Wind Speed native units (derived units)</td>
<td>50 m/s (112 mph) (97 kt)</td>
<td>42.5 m/s (95 mph) (83 kt)</td>
<td>96 – 110 mph (43 – 49 m/s) (83 – 96 kt)</td>
<td>100 – 110 mph (44 – 49 m/s) (87 – 96 kt)</td>
</tr>
<tr>
<td>Reference Wind Speed Averaging Period</td>
<td>10-minute mean</td>
<td>10-minute mean</td>
<td>1-minute sustained</td>
<td>3-sec gust</td>
</tr>
<tr>
<td>Multiplier to Estimate 10-minute Mean *</td>
<td>50 m/s</td>
<td>42.5 m/s</td>
<td>0.93</td>
<td>(1.11/1.23 = 0.90)</td>
</tr>
<tr>
<td>Estimated 10-Minute Mean Wind Speed at Hub Heights: 90 m & 100 m **</td>
<td>50 m/s</td>
<td>42.5 m/s</td>
<td>47.6 – 54.5 m/s</td>
<td>48.5 – 55.0 m/s</td>
</tr>
</tbody>
</table>

* See next slide for WMO tropical cyclone gust factors at 10 m height above ground.

For both hurricanes and nor′easters, estimated fundamental wind and wave parameters at 50- and 100-year return periods

- **Fundamental wind parameter is 10-minute average wind speed at meteorological “surface” elevation of 10 meters above sea level (U10)**
- **Fundamental wave parameter is the significant wave height (Hs) for an assumed 3-hour sea state duration**

From these fundamental parameters, existing and proposed standards specify derived wind and wave conditions to be used in various Design Load Cases (DLCs)

- A “reference” 10-minute mean wind speed (Vref) at turbine hub height is derived from U10 and an assumed vertical profile of wind speed
- Various multipliers of Vref, as specified in the applicable standard, are then used to derive estimates of “extreme” or “reduced” 3-second gust speeds to be used in the DLCs
- Various multipliers of Hs, as specified in the applicable standard, are used to derive estimates of “extreme,” “severe” and “reduced” individual waves and the sea state as a whole
Measured & WIS-Hindcast Significant Wave Heights off Delaware in 1998

NDBC Station 44009 Sig Wave Heights 1998

- NDBC
- NDBC events
- WIS
- WIS events
Measured & WIS-Hindcast Significant Wave Heights off Delaware in 1999

NDBC Station 44009 Sig Wave Heights 1999

- NDBC
- NDBC events
- WIS
- WIS events

Sig Wave Height (m)

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hurricane Hazard Model Overview

- Two Main Model Components
 - *Hurricane hazard simulation model (track, intensity and frequency)*
 - Probabilistic models for Radius to maximum winds and the Holland B parameter
 - *Wind field and wave models*

- Published in the peer reviewed open literature
 - 3 papers in meteorological journals (filling model, B and RMW models, and wind field model)
 - 4 papers in engineering journals (stochastic model methodology and wind field model)
 - *First ever track model*
 - *First model to model B as a random variable*

- Wind field model extensively validated
- Used in FEMA coastal flood studies
- Used in FEMA’s Hazus loss estimation tool HAZUS
Simulation Methodology

Step 1: Initialize Storm Sample B and RMW error term
Compute P_c, B, RMW
Step 2: 5" Squares Sample new θ and V_t
Compute new value of I
Compute P_c, B, RMW
Step 3: Storm Filling Central pressure filling (Vickery, 2005)
Site Lat and Long Distance inland vs. direction
Step 4: Windfield model (Vickery et al. 2008) turned on if storm within 250 km of site
$V = f(P_c, B, RMW, V_t, r)$
Central Pressure (6 hour interval)
Hurricane Wind Hazard Curve at CHLV2

Setting Up the Coupled Wind and Wave Design Load Cases
Both the IEC 61400-3 and the ABS BOWTI standards specify Design Load Cases (DLCs) for combined wind and wave loading by assuming that for a given design storm, the peak 3-second gust and the maximum individual wave height would not occur at the same instant at a given turbine location. They therefore specify two combined DLCs:

- **Extreme wind with reduced wave** (e.g., DLC 6.1b): the peak 3-second gust at hub height is combined with a “reduced” individual wave height that is lower than the maximum individual wave

\[
V_{gust,\text{max}} = 1.4 \ V_{\text{ref 10 min}} \quad \quad H_{\text{reduced}} = 1.3 \ H_s
\]

- **Extreme wave with reduced wind** (e.g., DLC 6.1c): the maximum individual wave height is combined with a “reduced” 3-second gust speed that is slower than the peak gust

\[
V_{gust,\text{reduced}} = 1.1 \ V_{\text{ref 10 min}} \quad \quad H_{\text{max}} = 1.86 \ H_s
\]
Both the IEC 61400-3 and the ABS BOWTI standards specify Design Load Cases (DLCs) for combined wind and wave loading by assuming that for a given design storm, the peak 3-second gust and the maximum individual wave height would not occur at the same instant at a given turbine location. They therefore specify two combined DLCs:

- **Extreme wind with reduced wave** (e.g., DLC 6.1b): the peak 3-second gust at hub height is combined with a “reduced” individual wave height that is lower than the maximum individual wave

 \[V_{\text{gust}, \text{max}} = 1.4 \, V_{\text{ref}, 10 \text{ min}} \quad H_{\text{reduced}} = 1.3 \, H_s \]

- **Extreme wave with reduced wind** (e.g., DLC 6.1c): the maximum individual wave height is combined with a “reduced” 3-second gust speed that is slower than the peak gust

 \[V_{\text{gust, reduced}} = 1.1 \, V_{\text{ref}, 10 \text{ min}} \quad H_{\text{max}} = 1.86 \, H_s \]

Is this the right multiplier and what kind of wave is it?
Comparing SHM-SWAN Wind & Wave Hazard Curves across Virginia Nearshore Shelf

WIS grid point nearest to wind and wave measurement validation stations

WIS grid point nearest to Virginia Offshore Wind Technology Advancement Project

Legend:
- Fixed platform metocean measurement station
- Moored buoy metocean measurement station
- Corps of Engineers WIS hindcast grid points
- Oceanweather EC28km hindcast grid points
- Virginia Wind Energy Area
- DMME Research Lease 2
Significant Wave Height Hazard Curve and Associated Mean Surface Wind Speeds at WIS 63197

WIS #63197 depth = 17m

100-yr Hs = 5.9 m
1,000-yr Hs = 6.1 m

Significant Wave Height Hazard Curve and Associated Mean Surface Wind Speeds at WIS 63196

WIS #63197 depth = 20m

- 100-yr Hs = 8.4 m
- 1,000-yr Hs = 8.6 m

What is Limiting Extreme Wave Heights?
Major Hurricane Isabel

Dates: 09/06 - 09/20 2003
Maximum Wind Speed: 165 mph
Minimum Pressure: 915 mb
US Landfall Category: Category 2 Hurricane
Deaths: 17
US Damage (Millions US $): 5370

Storm Category

<table>
<thead>
<tr>
<th>Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>mph</td>
<td>74-95</td>
<td>96-110</td>
<td>111-130</td>
<td>131-155</td>
<td>156+</td>
</tr>
<tr>
<td>mph</td>
<td><39</td>
<td>39-73</td>
<td>74-95</td>
<td>96-110</td>
<td>111-130</td>
</tr>
</tbody>
</table>

Sep 2003 Hurricane Isabel Track & Satellite Image
Sep 2003 Hurricane Isabel SWAN Modeling
Wind Speed Validation (Jeff Hanson & colleagues)

HWind swath map from http://hwind.co/legacy_data
Sep 2003 Hurricane Isabel SWAN Modeling
Wave Height Validation (Jeff Hanson & colleagues)

HWind swath map from http://hwind.co/legacy_data
SWAN modeled wave dissipation during Sep 2003 Hurricane Isabel at storm peak H_s
- JONSWAP bottom friction, $C_{f_{JON}} = 0.038$
- Westhuysen et al (2007)* whitecapping
- Surf breaking at $\gamma = H_{max}/d = 0.73$

Comparison of Dissipation Source Terms at Common Scale
Instance of Wave Breaking at FINO-1

Storm Event October 2009

Time lapse of breaking wave in 28 m depth at FINO-1 platform in North Sea; significant wave height = 5.2 to 5.3 m
Instance of Wave Breaking at FINO-1

Storm Event October 2009

Time lapse of breaking wave in 28 m depth at FINO-1 platform in North Sea; significant wave height = 5.2 to 5.3 m
Thank You!

Any questions?

Email: hagerman@vt.edu